The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Liver diseases are the major predisposing conditions for the development of malnutrition, sarcopenia, and frailty. Recently, the mechanism of the onset of these complications has been better established. Regardless of the etiology of the underlying liver disease, the clinical manifestations are common. The main consequences are impaired dietary intake, altered macro- and micronutrient metabolism, energy metabolism disturbances, an increase in energy expenditure, nutrient malabsorption, sarcopenia, frailty, and osteopathy. These complications have direct effects on clinical outcomes, survival, and quality of life. The nutritional status should be assessed systematically and periodically during follow-up in these patients. Maintaining and preserving an adequate nutritional status is crucial and should be a mainstay of treatment. Although general nutritional interventions have been established, special considerations are needed in specific settings such as decompensated cirrhosis, alcohol-related liver disease, and metabolic-dysfunction-associated fatty liver disease. In this review, we summarize the physiopathology and factors that impact the nutritional status of liver disease. We review how to assess malnutrition and sarcopenia and how to prevent and manage these complications in this setting.
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447940/ (2023)
Liver diseases are the major predisposing conditions for the development of malnutrition, sarcopenia, and frailty. Recently, the mechanism of the onset of these complications has been better established. Regardless of the etiology of the underlying liver disease, the clinical manifestations are common. The main consequences are impaired dietary intake, altered macro- and micronutrient metabolism, energy metabolism disturbances, an increase in energy expenditure, nutrient malabsorption, sarcopenia, frailty, and osteopathy. These complications have direct effects on clinical outcomes, survival, and quality of life. The nutritional status should be assessed systematically and periodically during follow-up in these patients. Maintaining and preserving an adequate nutritional status is crucial and should be a mainstay of treatment. Although general nutritional interventions have been established, special considerations are needed in specific settings such as decompensated cirrhosis, alcohol-related liver disease, and metabolic-dysfunction-associated fatty liver disease. In this review, we summarize the physiopathology and factors that impact the nutritional status of liver disease. We review how to assess malnutrition and sarcopenia and how to prevent and manage these complications in this setting.
https://www.mdpi.com/2072-6643/15/15/3487 (2023)