Nanoplastics Linked to Heart Attacks and Stroke
It can increase your risk of suffering from a heart attack or stroke by fourfold. Yet despite this, it's found in these everyday foods and even infant formula.
STORY AT-A-GLANCE
Nanoplastics, particles less than 1 micrometer in size, are a significant environmental and health concern due to their prevalence and potential hazards. Americans could consume up to 3.8 million pieces of micro- and nanoplastics per year from protein sources alone. Infant formula has also been confirmed to contain microplastics
Recent research found individuals with microplastics or nanoplastics in their carotid artery tissues have a 353% higher risk of cardiovascular events like heart attacks or strokes than those without microplastics in their arteries
Microplastics and nanoplastics in the body can cause oxidative stress, tissue damage, and inflammation, leading to chronic diseases beyond cardiovascular issues
To counteract the estrogenic exposure from plastics, progesterone, a natural estrogen antagonist, can be beneficial, with suggestions for its use and administration provided
Prevention strategies include minimizing plastic use, opting for alternatives to plastic packaging, using reusable containers, and detoxing through methods like sweating in a sauna to excrete microplastics
Nanoplastics — particles less than 1 micrometer in size, or 1,000th the average width of a human hair — have emerged as a significant environmental concern due to their widespread prevalence and potential health hazards to humans and wildlife alike. These microscopic fragments result from the degradation of larger plastic debris and can also be manufactured directly for various applications.
Nanoplastics have become ubiquitous in ecosystems around the world, from urban waterways to remote oceanic and terrestrial environments. Their pervasive presence is attributed to the widespread use and disposal of plastic materials globally.
Environmental Hazards
Nanoplastics pose several environmental hazards, including:
Biodiversity loss — Nanoplastics can harm aquatic and terrestrial organisms, leading to reduced biodiversity. They have been found to cause physical and chemical stress in marine life, affecting growth, reproduction, and survival rates.
Ecosystem disruption — Their presence in water bodies and soil can alter the chemical composition and physical properties of these environments, disrupting ecosystems' balance.
Food chain contamination — Nanoplastics can accumulate in the food chain, potentially leading to higher concentrations in top predators, including humans.
Microplastics Found in Food, Including Infant Formula
The environmental contamination is so severe, many foods now contain them, including chicken, pork, seafood, beef and plant-based meat alternatives, whether processed, minimally processed or unprocessed.1 The more processing a food has undergone, however, the more plastic it contains.
Researchers estimate that Americans consume up to 3.8 million pieces of micro- and nanoplastics per year from protein alone.2 The reason for this is because meats are packaged in plastic.
Recent research has also confirmed the presence of microplastics in all samples of infant formula tested (30 in all).3 The most frequently identified plastics were polyamide, polyethylene, polypropylene and polyethylene terephthalate. According to the authors, children fed exclusively infant formula likely consume an average of 49 microplastic particles per day.
Nanoplastics Linked to Heart Attacks and Stroke
The potential health impacts of micro- and nanoplastics on humans have long been debated, but a recent study4 published in the New England Journal of Medicine marks a significant step in understanding the health implications of microplastic and nanoplastic exposure.
Microplastics and nanoplastics, defined by their minuscule size, can migrate through body tissues, potentially causing oxidative stress, tissue damage and inflammation.
“Individuals with microplastics or nanoplastics in their carotid artery tissues have a 353% higher risk of cardiovascular events like heart attacks or strokes.”
The study in question analyzed tissue from 257 individuals undergoing carotid endarterectomy to identify plastics in arterial plaques, revealing the presence of polyethylene (associated with asthma, hormone disruption, reproductive issues and dermatitis5) and polyvinyl chloride (PVC, linked to liver and reproductive damage6), among others. As reported by the authors:7
“Polyethylene was detected in carotid artery plaque of 150 patients (58.4%), with a mean level of 21.7±24.5 μg per milligram of plaque; 31 patients (12.1%) also had measurable amounts of polyvinyl chloride, with a mean level of 5.2±2.4 μg per milligram of plaque.
Electron microscopy revealed visible, jagged-edged foreign particles among plaque macrophages and scattered in the external debris. Radiographic examination showed that some of these particles included chlorine.”
Disturbingly, individuals with microplastics or nanoplastics in their carotid artery tissues were found to have fourfold higher risk of suffering a cardiovascular event such as heart attack or stroke over the next three years compared to those without such plastics. They were also more likely to die from any cause. As reported by the authors:
“Patients in whom MNPs [microplastics and nanoplastics] were detected within the atheroma were at higher risk for a primary end-point event than those in whom these substances were not detected (hazard ratio, 4.53).”
A hazard ratio (HR) of 4.53 means that people with microplastics in their arteries have a 353% higher risk of suffering a potentially lethal cardiac event than those without microplastics.
Should Microplastic Exposure Be Considered a Cardiovascular Risk Factor?
Lead author Raffaele Marfella emphasized the need for further research to confirm these findings,8 although the study already suggests a strong association between plastics and cardiovascular events in people with atherosclerosis.
The study's implications are significant, according to pediatrician Dr. Philip Landrigan, who stressed the importance of addressing the potential cardiovascular risks posed by microplastics and nanoplastics in an accompanying editorial:9 10
“Although we do not know what other exposures may have contributed to the adverse outcomes among patients in this study, the finding of microplastics and nanoplastics in plaque tissue is itself a breakthrough discovery that raises a series of urgent questions.
Should exposure to microplastics and nanoplastics be considered a cardiovascular risk factor? What organs in addition to the heart may be at risk? How can we reduce exposure?”
Nanoplastics Pose Severe Hazards for Animals and Humans
CNN, which reported the findings, also highlighted research linking nanoplastics and microplastics to other potential harms, such as:11
Chronic inflammation — The presence of microplastics and nanoplastics in arterial plaques was linked to increased inflammation. Chronic inflammation, in turn, is a hallmark of most chronic diseases, not just cardiovascular disease, suggesting that plastic exposure could exacerbate or increase susceptibility to a wide variety of conditions.
Dysfunction of cells, organs and endocrine system — Nanoplastics, due to their small size, can migrate through tissues of the digestive tract or lungs into the bloodstream, invading individual cells and tissues in major organs. This can potentially interrupt cellular processes and deposit endocrine-disrupting chemicals, affecting the body's normal functions.
Oxidative stress and tissue damage — Studies in animals have shown that exposure to micro- and nanoplastics may cause oxidative stress, tissue damage, and inflammation in cells. These effects could lead to various health issues, depending on the extent and duration of exposure.
Impaired cardiac function — Animal studies have also indicated that micro- and nanoplastics can alter heart rate and impede cardiac function, posing additional risks to cardiovascular health.
Risks to fetuses and young infants — Research in pregnant mice has found plastic chemicals in the brain, heart, liver, kidney, and lungs of the developing fetus within 24 hours after the mother ingested or inhaled plastic particles. This suggests that plastics can cross the placental barrier, potentially affecting fetal development.
Previous studies have also found microplastics in the human placenta12 and human breast milk13 — clear evidence that a mother’s plastic exposure can be directly transferred to her child both before and after birth.
Microbiome alterations — Studies have also found that microplastics can alter the makeup of microbial communities, reducing diversity14 and increasing the exchange of antibiotic-resistant and metal-resistant genes.15
Progesterone Counteracts Xenoestrogen Exposure From Plastics
In the featured video at the top of this article, best-selling author and high-performance coach Siim Land reviews the research linking arterial nanoplastics to a near-fourfold higher risk of cardiovascular events.
As noted by Land, microplastics contain xenoestrogens, which have been linked to obesity, infertility, cancer and more. Indeed, estrogen is a known carcinogen,16 and plastics is perhaps one of the most ubiquitous sources of estrogen for men and women alike.
Estrogen is also antimetabolic and radically reduces the ability of your mitochondria to create cellular energy in a form of ATP by depending on aerobic glycolysis (the Warburg effect) which radically impairs oxidative phosphorylation.
To counteract the hazards of this estrogenic exposure you can use progesterone, which is a natural estrogen antagonist. Progesterone is one of only four hormones I believe many adults can benefit from. (The other three are thyroid hormone T3, DHEA and pregnenolone.)
As a general recommendation, most adult males and non-menstruating adult women would benefit from taking 25 to 50 mg of bioidentical progesterone per a day, taken in the evening one hour before bed, as it can also promote sleep. For optimal bioavailability, progesterone needs to be mixed into natural vitamin E. The difference in bioavailability between taking progesterone orally without vitamin E and taking it with vitamin E is 45 minutes versus 48 hours.
Pre-menopausal women can also take progesterone but it is the last half of their cycle, approximately 14 days after the last day of their period and stopping when period returns. Another good reason for taking progesterone with vitamin E is because it binds to red blood cells, which allows the progesterone to be carried throughout your body and be distributed to where it’s needed the most.
You can make your own by dissolving pure USP progesterone powder into one capsule of a high-quality vitamin E, and then rub the mixture on your gums. Fifty milligrams of powdered progesterone is about 1/32 teaspoon.
You can purchase pharmaceutical grade bioidentical progesterone as Progesterone Powder, Bioidentical Micronized Powder, 10 grams for about $40 on many online stores like Amazon. That is nearly a year's supply, depending on the dose you choose.
Do not use synthetic vitamin E (alpha tocopherol acetate — the acetate indicates that it’s synthetic). Natural vitamin E will be labeled “d alpha tocopherol.” This is the pure D isomer, which is what your body can use. There are also other vitamin E isomers, and you want the complete spectrum of tocopherols and tocotrienols, specifically the beta, gamma, and delta types, in the effective D isomer.
I do not recommend transdermal progesterone, as your skin expresses high levels of 5-alpha reductase enzyme, which causes a significant portion of the progesterone you're taking to be irreversibly converted primarily into allopregnanolone and cannot be converted back into progesterone.
For a more detailed explanation on the ideal way to administer progesterone, I recommend reviewing my article, “Unlocking the Secrets of Hormone Health and Vitality.”
Preventing Exposure Is Key
Of course, prevention — minimizing your exposure — really needs to be your first line of defense against microplastics. While that sounds easy enough, it can be tricky business, for the simple reason that micro- and nanoplastics are all around us, in our food, water, household dust, clothing, household and personal care items and even the air we breathe.
That said, making a concerted effort to rid your household of plastic can go a long way toward minimizing your and your children’s exposure. Here are a few pointers to get you started:
Filter your tap water and avoid water bottled in plastic — If you need to buy bottled water, opt for glass bottles. Also make sure the filter you use to purify your tap water can filter out microplastics.
Boil hard tap water — If you have hard tap water, consider boiling it before using it for cooking or drinking, as hard water traps more microplastics. Recent research shows boiling hard tap water for five minutes removes up to 90% of the microplastics in the water.17
Choose alternatives to plastic packaging — Opt for products packaged in glass, metal, or paper instead of plastic. This can significantly reduce the amount of plastic waste that potentially breaks down into microplastics. At home, use wax paper, parchment paper or paper bags to store foods rather than plastic wrap.
Use reusable containers — Replace single-use plastic bottles, cups, and containers with reusable alternatives made from safer materials like stainless steel or glass.
Never microwave plastics — Heat can cause plastics to leach chemicals into food. Use glass or ceramic containers for microwaving.
Avoid plastic cutting boards — Opt for wood or glass cutting boards instead.
Opt for natural fibers — Whenever possible, choose clothing and other textile products made from natural fibers like cotton, wool and linen, as synthetic fabrics such as polyester shed microfibers and leach xenoestrogens.
Wash synthetic clothes less frequently — When washing synthetic textiles, use a microfiber filter in your washing machine to trap synthetic fibers and prevent them from entering the water system.
Opt for food grade cosmetics and personal care products — Some cosmetics, toothpastes, and personal care products contain microbeads or other plastic particles. Look for products free of these materials. Ideally, opt for all-natural, food grade products.
How to Detox Microplastics
Even if you’re diligent about avoiding plastics, some exposure will likely remain, so detoxing is another important strategy. Land cites research showing that blood donation can lower the levels of certain plastic chemicals in your blood, such as PFAS. If your iron levels are high, getting regular phlebotomy would help you kill two birds with one stone, so to speak, as blood donation is also the only way to lower your iron level.
One of the most effective ways to excrete microplastics from your tissues though is through sweating. I recommend using a near-infrared sauna with low EMFs for this purpose, as the near-infrared rays can penetrate far deeper into your body than far-infrared.
Other benefits of sauna use include improved cardiovascular fitness and reduced all-cause mortality, lower blood pressure, reduced dementia risk, improved mental health, strengthened immune function, improved athletic endurance, reduced inflammation, stem cell activation, improved insulin sensitivity and a reduction in stress hormones.
General Guidance for Sauna Use
Classical Finnish saunas are typically heated to 170 degrees F. or higher. An infrared sauna will rarely get that high, however, which means you may need to stay in a bit longer to get a good sweat. A benefit of SaunaSpace’s near- and mid-infrared bulbs is that you’re heating up from deeper within, so the air temperature doesn’t need to be as high as a traditional sauna for you to sweat.
As a general recommendation, stay in the sauna for 20 to 30 minutes, or until you reach subjective fatigue, which is a sign that you’ve maxed out the benefits you’re going to get. It’s not about reaching a point of suffering — just that point where you’re feeling mildly anxious and tired and want to get out.
As for the frequency, research has consistently shown that it’s dose-dependent, so the more often you do it, the greater the benefits. The sweet spot seems to be right around four times a week, because you’ll also be losing minerals along with toxins. So, you need to rehydrate and replenish those minerals to avoid mineral deficiencies.
For more details, including how to build your own near-infrared sauna, see “Near-Infrared Sauna Therapy — A Key Biohack for Health.”
Disclaimer: The entire contents of this website are based upon the opinions of Dr. Mercola, unless otherwise noted. Individual articles are based upon the opinions of the respective author, who retains copyright as marked.
The information on this website is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the research and experience of Dr. Mercola and his community. Dr. Mercola encourages you to make your own health care decisions based upon your research and in partnership with a qualified health care professional. The subscription fee being requested is for access to the articles and information posted on this site, and is not being paid for any individual medical advice.
If you are pregnant, nursing, taking medication, or have a medical condition, consult your health care professional before using products based on this content.
Microplastics contaminate almost every part of the environment, including the food chain. They can adsorb different types of chemicals and microorganisms on their surface and thus increase the pollution load. Since microplastics are relatively small, they are easily ingested and can negatively affect the health of consumers. Research in this area has advanced and the first conclusions have been drawn that affirm that microplastics serve as a vehicle for the spread of toxic chemicals in the marine environment.
In addition to PCBs, organochlorine compounds, polyaromatic hydrocarbons, insecticides DDT and HCH, heavy metals such as copper, arsenic, cadmium, lead and chromium, and antibiotics can contaminate microplastics. Microplastics with adsorbed contaminants can represent a potential risk to marine organisms, especially when they enter the food chain through ingestion. The concentration of chemical contaminants in microplastics can be one hundred to one million times higher than in the surrounding water. Ingestion of microplastics with adsorbed micropollutants by aquatic animals is one way these toxic contaminants enter organisms.
In addition to air and water pollution, soil pollution is another possible source of microplastics in the food chain. Soil contamination by microplastics occurs through several routes. These include landfills, soil treatment, use of sewage sludge for soil fertilization, wastewater irrigation, use of compost and organic fertilizers, leftover mulch sheets, tire wear and the atmospheric gradient.
Exposure to these microplastics leads to systematic exposure, while larger microplastics can only produce local effects on the immune system (e.g. inflammation of the intestine.
Micro/nanoplastics (MP/NP) contribute to the emergence of neurological development and/or neurodegenerative risks. Nanoplastics pose a greater risk because their size allows them to more easily cross the placenta and the blood-brain barrier.
The long-term effects of microplastics on the body may include the induction of oxidative stress through the production of reactive oxygen species during the inflammatory reaction, which may lead to cytotoxic effects. Ingesting microplastics can alter energy balance, metabolism and the immune system. When MP/NPs are present in the brain, they can initiate a series of molecular or cellular reactions that can damage the blood-brain barrier, cause oxidative stress, trigger inflammatory responses, affect acetylcholinesterase activity, cause mitochondrial dysfunction, and impair autophagy.
Another risk associated with the consumption of microplastics in food is the microbial association with its surface. The presence of various pathogenic species on the surface of microplastics has been confirmed and the consumption of shellfish increases human exposure to these microorganisms. Microplastics can release harmful chemicals such as bisphenol A, PCBs, PAHs, chlorinated pesticides, BFRs and antibiotics into foods, which can subsequently have carcinogenic and mutagenic effects and act as endocrine disruptors. According to some studies, persistent organic pollutants consumed together with microplastics represent a negligible source of pollution for humans.
https://www.mdpi.com/2075-1729/11/12/1349 (2022).---
https://www.sciencedirect.com/science/article/abs/pii/S138266892200206X (2022).---
https://apps.who.int/iris/bitstream/handle/10665/362049/9789240054608-eng.pdf
(2022).---
https://www.sciencedirect.com/science/article/pii/S0929139322002839 (2023).---
https://www.cell.com/heliyon/pdf/S2405-8440(23)00503-0.pdf (2023).----
https://www.sciencedirect.com/science/article/abs/pii/S0304389424006332 (2024).--
I thought Dr. Mercola said IP-6 would lower iron?
I believe Ana Mihalcea MD said on one of her substacks that EDTA and Methylene Blue detoxed the nano plastics.